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Abstract

We propose a direct solver to the non-stationary Boltzmann–Poisson system for simulating the electron transport in
two-dimensional GaAs devices. The GaAs conduction band is approximated by a two-valley model. All of the impor-
tant scattering mechanisms are taken into account. Our numerical scheme consists of the combination of the multi-
group approach to deal with the dependence of the electron distribution functions on the three-dimensional electron
wave vectors and a high-order WENO reconstruction procedure for treating their spatial dependences. The electric field
is determined self-consistently from the Poisson equation. Numerical results are presented for a GaAs-MESFET. We
display electron distribution functions as well as several macroscopic quantities and compare them to those of Monte
Carlo simulations. In addition, we study the influence of the used discretization on the obtained results.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we present a numerical procedure for directly solving the non-stationary Boltzmann–Poisson
system for two-dimensionalGaAs devices. So far,mainly stochasticmethods, i.e.,MonteCarlo techniques are
applied for simulating the charge transport in submicron semiconductor devices [1]. However, the solution of
theBoltzmann transport equations (BTEs), which govern the particle transport in semiconductors, with deter-
ministic methods is assigned to some important advantages in comparison to Monte Carlo procedures.
0021-9991/$ - see front matter � 2005 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2005.08.003

* Corresponding author. Tel.: +43 316 8738177; fax: +43 316 8738677.
E-mail addresses: galler@itp.tu-graz.ac.at (M. Galler), schuerrer@itp.tu-graz.ac.at (F. Schürrer).

mailto:galler@itp.tu-graz.ac.at
mailto:schuerrer@itp.tu-graz.ac.at


M. Galler, F. Schürrer / Journal of Computational Physics 212 (2006) 778–797 779
Standard Monte Carlo methods are unable to resolve almost empty regions of two-dimensional devices,
e.g., areas close to the gate of aMESFET, while deterministic approaches can do. Hence, deterministic results
should be used as benchmarks forMonte Carlo, hydrodynamic or drift-diffusion results, even though they are
not competitive with Monte Carlo schemes with respect to the computation time in two dimensions. In addi-
tion, direct solution techniques to theBTEs exhibit high efficiencies in computing transient processes. They are
featured by the knowledge of the particle distribution functions and not only of their moments and they give
results without numerical noise even close to regions between different boundary conditions.

Thus, the direct solution of the Boltzmann transport equations has become an important alternative to
the Monte Carlo simulations. As an early example, the work of Niclot et al. [2] should be mentioned. Fatemi
and Odeh construced an upwind finite-difference approximation to the Boltzmann–Poisson (BP) system [3].
Majorana and Pidatella solved the BP system by means of a box method in the energy and angle variables
and combined this approach with a classical discretization technique for advection equations based on
upwinding in the spatial variable [4]. Carrillo et al. succeeded in introducing a deterministic high-order fi-
nite-difference WENO solver for the solution of the one-dimensional [5,6] as well as of the two-dimensional
BP system for semiconductor devices [7]. In these papers, deterministic methods are presented for simulat-
ing the electron transport in silicon devices. However, schemes which allow the investigation of the carrier
transport in III–V compound semiconductor devices are still rare in the literature. As very recent examples,
we refer to the WENO solver for the BP system of Cáceres et al. [8] considering the electron transport in
one-dimensional GaAs-diodes and to Galler and Schürrer [9] who study these devices with the help of a
multigroup-WENO solver.

To close this gap for the two-dimensional case, we construct a multigroup-WENO solver for the 2D
BTEs in order to determine the electron distribution functions in dependence of three momentum variables,
two spatial variables and time. Therefore, we follow the main ideas proposed in [9] for simulating a 1D
GaAs-diode and in [10], where a multigroup-WENO solver for 2D silicon devices is presented. We regard
the multi-valley regime typical for polar semiconductors and take into account the anisotropy of some of
the main scattering mechanisms of GaAs. In addition, the Poisson equation is coupled with the BTEs to
describe self-consistently the electric field strength in the device.

The multigroup approach, which is applied to treat the dependence of the electron distribution function
on the electron wave vector, has been used with great success for investigating the particle transport in bulk
semiconductors [11–13]. It consists of a partition of the momentum space into tiny cells and the approxi-
mation of the distribution function by an appropriate ansatz, which leads to a similar approximation of the
collision integral of the BTE as it was obtained in [8].

Modern semiconductors devices are featured by changes of their compositions on short length scales.
Hence, suitable numerical methods for treating the spatial dependences of the distribution functions must
be applied to cope, e.g., with abrupt changes in the doping concentration. Consequently, we combine our
multigroup transport equations with a high-order WENO scheme [14] for approximating the spatial deriv-
atives in the diffusion terms of the BTEs.

This paper is organized as follows. In Section 2, we summarize the basic equations which constitute the
BP system for GaAs and transform them into a conservative form. The numerical scheme for solving the
BP system is presented in Section 3. Finally, Section 4 deals with the application of the multigroup-WENO
solver to the electron transport in a GaAs-MESFET.
2. The Boltzmann–Poisson system

We approximate the conduction band of GaAs by taking into account the C-valley in the center of the
first Brillouin zone and four equivalent L-valleys along the crystallographic directions Æ1,1,1æ. The consid-
ered energy valleys are described by the non-parabolic, spherical dispersion law
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relating the energy �m in the valley m = C, L and the electron wave vector k with k = jkj [15]. Here, D0m de-
notes the gap between the minimum of the valley m and the zero energy level, which is set to the energy of
the bottom of the C-valley. The symbols m�

m and am refer to the effective mass and the non-parabolicity
factor of the considered valley, respectively.

In semiconductors, the electronic states are occupied according to the electron distribution functions
fm(t,x,k), which are the probability densities to find an electron at time t at the position x in the valley m
with the wave vector k. The evolutions of these functions are governed by the Boltzmann transport equa-
tions [16]:
ofmðt; x; kÞ
ot

þ vm � rrfmðt; x; kÞ �
Q

�h
E � rkfmðt; x; kÞ ¼ C½fm; fl�: ð2Þ
Here, the group velocity is defined as vmðkÞ ¼ rk�mðkÞ=�h ¼ �hkf1þ 2am½�mðkÞ � D0m�g=m�
m for m = C, L in cor-

respondence with (1). The electrostatic potential V and the related electric field strength E are found as the
solution of the Poisson equation
DV ðt; xÞ ¼ � Q

este0
½NDðxÞ � nðt; xÞ�; Eðt; xÞ ¼ �rV ðt; xÞ; ð3Þ
where Q and este0 label the positive elementary charge and the dielectric constant of the semiconductor,
respectively. The donor density ND is fixed in time, while the time-dependent electron density n is found
by forming moments of the electron distribution functions:
nðt; xÞ ¼ ZC
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Z
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The collision terms in the BTEs (2) for the scattering mechanisms n read in the low density approximation
Cn½fm; fl� ¼
Z
R3

dk0 Sn
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h i

: ð5Þ
In our transport model for GaAs, we regard the acoustic deformation potential scattering (ADP) and
the ionized impurity scattering (IMP). The most important intravalley scattering mechanism for GaAs is
the polar optical interaction (POP). Besides these intravalley scattering mechanisms, we also consider the
intervalley scattering (IV) by non-polar optical phonons transferring electrons between the C- and L-valleys
(non-equivalent intervalley scattering) and between the L-valleys (equivalent intervalley scattering). The
transition rates Sn

mlðk; k0Þ of these scattering mechanisms are given in Table 1 and correspond to the expres-
sions which are found in [17]. In this table, we use the abbreviations �m = �m(k) and �0m ¼ �mðk0Þ. In addition,
np = [exp(�hxp/kBTL)�1]�1 and no = [exp(�hxo/kBTL)�1]�1 refer to the occupation number of polar and
non-polar optical phonons, respectively. The overlap factor in the term of POP scattering is defined
as Imðk; k0Þ ¼ cþm ð�mÞcþm ð�0mÞ þ c�m ð�mÞc�m ð�0mÞk � k0=jkjjk0j with c�m ð�mÞ ¼ ½1=2� 1=2þ amð�m � D0mÞ�=½1þ 2amf
ð�m � D0mÞ�g

1
2. The screening parameter appearing in the transition rate of IMP scattering is evaluated by

q2D ¼ Q2N I=este0kBT L. All the other symbols used in Table 1 are explained in Table 2. For more details,
we refer to [16–18].

With the aim of transforming the BTE (2) in a conservative form, we introduce the following change of
variables. We express the electron wave vector km(�, l, u) in the valley m in spherical coordinates as a func-
tion of the energy �, measured from the energy reference, the cosine of the polar angle l and the azimuth
angle u:



Table 2
Material parameters for GaAs

Quantity Symbol Unit Value

Mass density q kg m�3 5360
Sound velocity vs m s�1 5240
Static dielectric constant est 12.90
High-frequency dielectric constant ehf 10.92
Acoustic deformation potential DA eV 7
Optical deformation potential DO eV m�1 1011

Non-polar optical phonon energy ⁄xo eV 0.032
Polar optical phonon energy ⁄xp eV 0.032
Impurity concentration NI cm�3 1014

Quantity Symbol Unit C-valley L-valley

Effective mass ratio m�
m=m0 0.067 0.35

Non-parabolicity factor am e V�1 0.611 0.242
Valley bottom energy D0m eV 0 0.32
Number of equivalent valleys Zm 1 4

Table 1
Transition rates Sn

mlðk;k0Þ for the scattering mechanisms n for GaAs
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with the Heaviside step-function H. Furthermore, we take into account that fm only depends on the vari-
ables t, x, y, �, l and u for spatially two-dimensional problems with inhomogeneities in the x- and y-direc-
tion. Based on the change of variables (6a) and the features of fm, some algebra reveals that the BTE (2) can
be transformed into
oUm

ot
þ oðgm1UmÞ

ox
þ oðgm2UmÞ

oy
þ oðgm3UmÞ

o�
þ oðgm4UmÞ

ol
þ oðgm5UmÞ

ou
¼ C½Um;Ul�: ð7Þ
This expression contains the new unknown functions
Umðt; x; y; �; l;uÞ ¼ Dmð�Þfmðt; x; y; �; l;uÞ ð8Þ

for m = C, L with the Jacobian of the transformation (6)
Dmð�Þ ¼
m�

m

�h3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m�

mð�� D0mÞ½1þ amð�� D0mÞ�
q

½1þ 2amð�� D0mÞ�Hð�� D0mÞ; ð9Þ
which equals the density of states except for a constant factor. The rewritten collision integral reads
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with dS0 ¼ d�0dl0du0; D ¼ ½ð0;1Þ � ½�1; 1� � ½0; 2p�, km = km(�, l, u), k0
l ¼ klð�0; l0;u0Þ, Um = Um(t,x,y,�,

l,u) and U0
l ¼ Ulðt; x; y; �0; l0;u0Þ. In addition, the functions gml , l = 1,2, . . ., 5 are defined as
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The functions gm3, g
m
4 and gm5 contain the x- and y-component of the electric field, determined from the 2D

Poisson equation
Exðt; x; yÞ ¼ � o

ox
V ðt; x; yÞ; Eyðt; x; yÞ ¼ � o

oy
V ðt; x; yÞ; ð12aÞ
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ox2
V ðt; x; yÞ þ o2

oy2
V ðt; x; yÞ ¼ � Q

este0
½NDðx; yÞ � nðt; x; yÞ�: ð12bÞ
3. Numerical scheme

In this section, we introduce the numerical scheme used to solve the BP system (7) and (12b). To begin
with, we treat the dependences of the unknown functions Um on the independent variables �, l and u by
means of the multigroup approach. Therefore, we discretize these variables according to
�miþ1
2
¼ D0m þ iD�; i ¼ 0; 1; . . . ;N m; D� ¼ �hxp

nmul

; ð13aÞ

ljþ1
2
¼ jDl� 1; j ¼ 0; 1; . . . ;M ; Dl ¼ 2

M
; M ¼ 2mmul; ð13bÞ

ukþ1
2
¼ kDu; k ¼ 0; 1; . . . ;R; Du ¼ p

R
; R ¼ 2rmul ð13cÞ
with nmul;mmul; rmul 2 N. In (13c), we take advantage of the mirror symmetry with respect to u in the
considered two-dimensional case. The choice of M and R as even integers guarantees a well-defined wind
direction, as it is needed below. The definition of D� allows us to evaluate the collision integral of the POP
interaction without a smearing of the Dirac distribution related to the energy conservation. The integer
numbers Nm must be chosen in a way so that the maximum energies �mmax ¼ �mN m

guarantee that
Umðt; x; y; �mmax; l;uÞ are negligible for all t, x, y, l, u and m = C, L.

Next, we approximate the unknown functions Um as the finite sums
Umðt; x; y; �; l;uÞ �
XN m

i¼1

XM
j¼1

XR
k¼1

nmijkðt; x; yÞdð�� �mi Þdðl� ljÞdðu� ukÞ ð14Þ
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containing Nm · M · R unknown coefficients nmijk and the Dirac distributions d with the poles �mi ¼
D0m þ ðiþ 1=2ÞD�, i = 1,2, . . .,Nm, lj = (j + 1/2)Dl�1, j = 1,2, . . .,M and uk = (k + 1/2)Du, k = 1,2, . . .,R.
The ansatz (14) implies that the macroscopic quantity Æm(t, x, y)æ to the microscopic one, m(�,l,u), can
be evaluated via
hmðt; x; yÞi ¼
X
m¼C;L

Zm

2p3

XN m

i¼1

XM
j¼1

XR
k¼1

mð�mi ; lj;ukÞnmijkðt; x; yÞ; ð15Þ
as it can easily be verified by forming moments of (14).
The evolution equations of the coefficients nmijk are constructed as suggested by the method of weighted

residuals [19]. The ansatz (14) is inserted into the BTE (7) and the result is successively integrated over the
cells Dm

ijk ¼ ½�mi�1=2; �
m
iþ1=2� � ½lj�1=2; ljþ1=2� � ½uk�1=2;ukþ1=2�. In addition, we apply an upwind scheme in the

force term together with a linear approximation of the fluxes through the boundaries of the cells controlled
by a MinMod slope limiter [20]. This procedure yields a closed set of Nm · M · R partial differential equa-
tions for each of the valleys m = C, L. It reads
onmijk
ot

þ o
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l
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ijk;abcinmijk
h i

ð16Þ
with i = 1,2, . . .,Nm, j = 1,2, . . .,M and k = 1,2, . . .,R. The collision coefficients for the scattering mechanism
n are evaluated via
hSn;ml
ijk;abci ¼
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Z
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l
abc[ ~D
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dS0DlðE0ÞSn
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0
lÞdð�� �mi Þdðl� ljÞdðu� ukÞ ð17Þ
with ~D
l

abc ¼ ½�l
a�1

2

; �l
aþ1
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2
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2
� � ½2p� ukþ1

2
; 2p� uk�1

2
�. The numerical fluxes hm3;i�1

2;jk
are given by
hm3;iþ1
2;jk

¼
gm
3;iþ1

2;jk
ðnmijk þ smijkÞ; gm3;ijk > 0;

gm
3;iþ1

2;jk
ðnmiþ1;jk � smiþ1;jkÞ; gm3;ijk < 0;

(
ð18aÞ

hm3;i�1
2;jk

¼
gm
3;i�1

2;jk
ðnmijk � smijkÞ; gm3;ijk < 0;

gm
3;i�1

2;jk
ðnmi�1;jk þ smi�1;jkÞ; gm3;ijk > 0;

(
ð18bÞ

smijk ¼
1

2
MMðnmiþ1;jk � nmijk; n

m
ijk � nmi�1;jkÞ ð18cÞ
with the MinMod scheme
MMða; bÞ ¼
sgnðaÞminðjaj; jbjÞ; ab > 0;

0; otherwise:

�
ð19Þ
Similar expressions are used to determine hm4;i;j�1=2;k and hm5;ij;k�1=2.
For treating the spatial dependence of the coefficients nmijk in the multigroup Eqs. (16), we apply a fifth-

order WENO scheme to cope with the strong variations of the electron distributions in space due to, e.g.,
sharp doping profiles [6,14]. Therefore, we discretize the spatial variables equidistantly
xn ¼ nDx; n ¼ 0; 1; . . . ; P ; Dx ¼ Lx

P
; ð20aÞ

ym ¼ mDy; m ¼ 0; 1; . . . ;Q; Dy ¼ Ly

Q
; ð20bÞ
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where Lx and Ly are the dimensions of the device. Next, we approximate the spatial derivatives in (16), for
instance, that with respect to y, as
o

oy
½gm2;ijknmijkðt; xn; ymÞ� �

1

Dy
ĥmþ1

2
� ĥm�1

2

� �
ð21Þ
for fixed indices i, j, k, n and fixed time t. Therefore, these parameters are not written down in the numerical
fluxes ĥm�1=2 to keep the description concise. We note that the wind direction, i.e., the sign of gm2;ijk is well-
defined because of the chosen discretization (13a), and it is independent of m. Thus, for fixed i, j, k, the wind
direction is fixed. Moreover, the coefficients nmijkðt; xn; ymÞ are positive for physically relevant initial condi-
tions so that flux splitting is not necessary. We define
hm ¼ gm2;ijkn
m
ijkðt; xn; ymÞ; m ¼ �3;�2; . . . ;Qþ 3 ð22Þ
for fixed i, j, k, n and use them to determine the numerical fluxes ĥmþ1
2
by means of the fifth-order WENO

scheme proposed in [14]. In (22), fluxes are defined in points, the so-called ghost points, which do not be-
long to the considered device. They must be chosen to suitably model the demanded boundary conditions.
For instance, we consider a boundary at y = yQ. For simulating reflecting boundaries, we set
nmijkðt; xn; yQþmÞ ¼ nmijkðt; xn; yQþ1�mÞ; m ¼ 1; 2; 3; ð23aÞ
according to [6], which implies that ĥQþ1=2 ¼ 0. The Schottky contacts are modeled as totally absorbing con-
tacts. Hence, we apply
nmijkðt; xn; yQþmÞ ¼
nmijkðt; xn; yQÞ; gmijk > 0;

0; gmijk < 0;

(
m ¼ 1; 2; 3 ð23bÞ
for determining the fluxes in the ghost-points at such contacts. Finally, the ohmic contacts are simulated via
nmijkðt; xn; yQþmÞ ¼
nmijkðt; xn; yQÞ; gmijk > 0;

nM ;m
ijk ðxn; yQÞ; gmijk < 0;

(
m ¼ 1; 2; 3: ð23cÞ
Here, the coefficient nM ;m
ijk are obtained from Maxwell distributions, which are normalized to the donor

density
nM ;m
ijk ðxn; ymÞ ¼ NDðxn; ymÞ

R
Dm
ijk
dSDmð�Þ exp � �

kBTL

� �
P

l¼C;L
Zl

4p3

R
D dSDlð�Þ exp � �

kBTL

� � : ð24Þ
In addition, we set ĥQþ1=2 ¼ Cðt; xnÞgmijkn
M ;m
ijk ðxn; yQÞ for gmijk < 0, where the factor C(t, xn) is determined so that

the charge neutrality at the contact is fulfilled.
The combination of the multigroup equations (16) with the WENO scheme (21) leads to a set of

Nm · M · R · P · Q ordinary differential equations in time for each of the considered valleys m. The time
integration is performed by means of the TVD forward Euler scheme [21], where the time step Dt is chosen
so that the CFL condition for guaranteeing stability of the numerical procedure is fulfilled. Thus, we deter-
mine the time step via
Dt ¼ CCFL

max
jgm

1
j

Dx þ
jgm

2
j

Dy þ
jgm

3
j

D� þ
jgm

4
j

Dl þ
jgm

5
j

Du

� � ð25Þ
with CCFL = 0.8 and update it in the simulation for taking into account the changing of the electric fields
(cp. (11a)). The Poisson equation (12b) is solved with the help of a standard Successive Over-Relaxation
(SOR) scheme [1] at each time step with the modified charge density obtained from the multigroup-WENO
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equations. At the initial time t0, we set the electron distribution functions to the equilibrium Maxwellians
(24), i.e., nmijkðt0; xn; ymÞ ¼ nM ;m

ijk ðxn; ymÞ.
We close this section with some remarks on the numerical procedures used for approximating the terms

of the BTEs. From a mathematical point of view, the multigroup approach for treating the collision terms
of the BTEs corresponds to the midpoint rule. Therefore, this approximation is of second-order and it is
consistent to apply the second-order MinMod scheme for handling the force term. In [5–8], the collision
terms of the BTEs are evaluated with the help of a similar procedure as we do, so that the use of a
fifth-order WENO technique for treating the force terms does not increase the accuracy of the method.
Moreover, the choice of values for ghost points in the momentum space as it is necessary when using
the WENO code, is a tricky problem, while our approach is rid of such difficulties. Finally, the collision
terms smooth out the electron distribution functions in the wave vector space, which prevents the electric
field from forming sharp gradients in Um as functions of energy and angles. That is why we think that our
multigroup approach for handling the dependence of the distribution function on the wave vector is
certainly an appropriate choice. On the other hand, the application of the high-order WENO scheme in
physical space is absolutely necessary for stopping the sharp gradients in the doping concentration from
acting as the origins of spurious oscillations. Apart from these regions of the device, the electron distribu-
tion function is also very smooth in the real space, and the WENO technique can bring to bear its high
efficiency for hyperbolic systems. At the first glaze, it might be surprising why we combine the second-order
multigroup and the fifth-order WENO procedure with the Euler rule for performing the time integration,
which is only of first order. This choice is motivated on physical grounds. The temporal evolution from the
unphysical initial conditions mentioned above towards the stationary state is not of practical interest.
Hence, this relaxation can be treated by the not very accurate, but fast and simple Euler scheme. However,
we get accurate results for the stationary state, since the steady-state distribution does not depend on the
way as it is reached. For the investigation of a real time dependent problem, for instance, a switching pro-
cess, the so obtained stationary-state results can be used as initial data. The further temporal evolution can
then be studied with the help of a scheme that is consistent with the rest of the numerical procedure, for
example, the second-order TVD Runge–Kutta method proposed in [21].
4. Numerical results

In this section, we present the results for the electron transport through a GaAs-MESFET obtained by
means of our multigroup-WENO solver (16), (21). All of the calculations are performed at the lattice
temperature TL = 300 K. The material parameters used are given in Table 2. These values are the same
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Fig. 1. Schematic illustration of the considered MESFET geometry.
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Fig. 3. X-component vx and y-component vy of the drift velocity versus position (x, y) at t = 4 ps.
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Fig. 2. Electron density n versus position (x,y) in the GaAs-MESFET at t = 4 ps.
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as given in [8] and they equal approximately the data proposed in [16,17]. The geometry of the investi-
gated GaAs-MESFET is shown in Fig. 1. The donor densities are chosen as n+ = 7 · 1016 cm�3 and
n = 1016 cm�3. The source and drain contacts act as particle reservoirs. Electrons may enter or exit
through these contacts, which is modelled according to (23c). The Schottky contact at the gate is
assumed to be a totally absorbing boundary (23b), whereas perfectly reflecting boundary conditions
are imposed at the non-contact surfaces (23a). Concerning the boundary conditions for the Poisson equa-
tion, we apply the Neumann condition (vanishing electric field in the direction normal to the surface) on
the non-contact boundaries to simulate insulating boundaries. The source, gate and drain contacts are
treated as Dirichlet boundaries, where the bias voltages of VS = 0 V at the source, VG = �0.4 V at the
gate and VD = 0.8 V at the drain are applied. All of these boundary conditions are chosen as it is the
standard for basic MESFET simulations. However, we remark that for the investigations of real devices,
these settings must certainly be questioned.
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Fig. 5. Mean electron energy E versus position (x, y) at t = 4 ps.
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Fig. 4. Velocity field and current lines at t = 4 ps.
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The parameters of the grid are chosen as NC = 50, NL = 30, nmul = 2, M = R = 10 for the momen-
tum space together with P = 48, Q = 24 grid points in real space. The time integration is performed
from the initial time t0 = 0 ps up to the final time t = 4 ps, when the stationary state is approximately
reached.

In Figs. 2–5, the most important hydrodynamic transport quantities, namely the electron density, the
components of the drift velocity, the velocity field and the mean electron energy are displayed. First of
all, we point out the highly regular, non-oscillatory behavior of these quantities throughout the whole de-
vice. This behavior implies that the proposed numerical technique is able to resolve the spatial dependence
of transport quantities even in regions of very low electron densities and at abrupt changes of the donor
density.
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Fig. 8. Electric field and equipotential lines at t = 4 ps.
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Fig. 9. Electron density n versus position x in the GaAs-MESFET at t = 4 ps. The lines refer to present results, the symbols depict
Monte Carlo data. (���, n) electron density at y = 50 nm; (———-, s) electron density at y = 150 nm; (� Æ �) C-electron density at
y = 150 nm; (� � �) L-electron density at y = 150 nm.
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Concerning the electron density in Fig. 2, we observe the formation of a depletion layer at the gate con-
tact, since strong electric fields repulse the carriers from this region. In this respect, the behavior of the
GaAs-MESFET agrees with that of the silicon MESFET, studied in detail in [7,10]. On the other hand,
the charge accumulation, which is formed around the drain n–n+ interface, is not found in the correspond-
ing silicon device. As discussed in [9,17] for the GaAs n+–n�n+ diode, this enhanced electron density near
the drain results from the backscattering of carriers into the active region after having already entered the
high doping drain region. Due to this typical multi-valley effect, the anode contact cannot be simply treated
as a drain for the electrons in the designing of submicron GaAs devices, since this region has a strong influ-
ence on the distribution of electrons in the active zone. In addition, we observe a sharp drop of the electron
density at the source contact, which does not seem reasonable at the first glance. However, since we also
found this drop in the corresponding MC calculation, this behavior must be a consequence of the used
boundary condition and not an artefact of our numerical scheme.

In the x- and the y-component of the electron drift velocity in Fig. 3, we find values which exceed the
maximum drift velocity of bulk GaAs (about 1.8 · 105 m s�1 at room temperature [9]) significantly. Thus,
ballistic transport plays an important role in the considered device. A more descriptive illustration of the
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Fig. 10. X-component vx and y-component vy of the drift velocity versus position x at t = 4 ps. The lines refer to present results, the
symbols depict Monte Carlo data. (���, n) drift velocity at y = 50 nm; (———-, s) drift velocity at y = 150 nm; (� Æ �) C-drift
velocity at y = 150 nm; (� � �) L-drift velocity at y = 150 nm.
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electron drift velocity is given in Fig. 5. Here, we display the electron velocity field and some current lines.
Although this representation gives only qualitative information, it offers a simple way for studying the
transport of the electrons through the device.
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Fig. 12. Electrostatic potential V versus position x at t = 4 ps. The lines refer to present results, the symbols depict Monte Carlo data.
(���, n) potential at y = 0 nm; (� Æ �, h) potential at y = 100 nm; (———-, s) potential at y = 200 nm.

Table 3
Number of grid points used in the simulations A, B and C

Simulation nmul NC NL M R P Q Total

A 2 50 30 10 10 48 24 9,216,000
B 1 25 15 8 6 30 16 921,600
C 1 25 15 4 4 18 8 92,160
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Fig. 11. Mean electron energy E versus position x at t = 4 ps. The lines refer to present results, the symbols depict Monte Carlo data.
(���, n) electron energy at y = 50 nm; (———-, s) electron energy at y = 150 nm; (� Æ �) C-electron energy at y = 150 nm; (� � �)
L-electron energy at y = 150 nm.
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The mean electron energy in Fig. 4 equals approximately the mean lattice energy 3kBTL/2 in the source
region. In the active region, the electrons are accelerated by strong electric fields and gain energy, leading to
a maximum electron energy at the drain n–n+ interface. At the drain contact, the mean energy is low again.
This is caused by the fact that the electrons lose their energies in several scattering events and that hot, i.e.,
high energetic outflowing electrons are replaced by cold inflowing carriers.

For illustrating the electrical properties of the considered GaAs-MESFET, we display the x- and the y-
components of the electric field as well as the electrostatic potential versus position in Figs. 6 and 7. The
potential is very regular, while the components of the electric fields feature some spikes due to their singu-
larities in the points of changing boundary conditions. Additionally, we find strong y-components of the
field repulsing the electrons from the gate, as well as the back-drawing fields at the changes in the doping
concentration. An illustrative summary of Figs. 6 and 7 is given in Fig. 8 depicting the electric field and the
equipotential lines in the MESFET at t = 4 ps.

For the validation of our numerical scheme, we compare our results with those of Monte Carlo calcu-
lations, which are obtained by the code of Tomizawa [17]. This code has been slightly modified concerning
the scattering rates used, which allows us a suitable comparison of the deterministic and the stochastic re-
sults. We show some cuts of the electron density, the drift velocity, the mean energy and the electrostatic
potential in Figs. 9–12. We find that all of the displayed cuts of the electrostatic potential as well as all of the
hydrodynamic quantities at y = 50 nm agree very well. In addition, the cuts at y = 150 nm exhibit the same
good consistency in the regions where the electron density is not too small. We also observe that the Monte
Carlo method is not able to determine the macroscopic quantities in the depletion layer in a sufficiently
accurate order, while our deterministic technique allows us the investigation of this region.

Besides the total electron density, velocity and energy, we also display the portions of these quantities
due to C- and L-electrons for y = 150 nm. We find that the transport is dominated by C-electrons between
x = 0 and x = 300 nm. For x-values higher than 300 nm, electrons have gained high enough energies so that
a significant portion of them is scattered into the L-valleys and the total macroscopic quantities set up by a
complicated interplay of C- and L-electrons. We observe that there are more L-electrons than C-electrons
between x = 400 and x = 550 nm. The L-drift velocity is low in comparison to the C-velocity as a conse-
quence of the high effective mass of L-electrons and the very efficient equivalent intervalley scattering in
these valleys. Finally, we find that both the C- and the L-electrons are significantly heated in the drain
region.
0 100 200 300 400 500 600
0

1

2

3

4

5

6

7

x [nm]

n 
[1

016
 c

m
–3

]

Fig. 13. Electron density n versus position x in the GaAs-MESFET at t = 4 ps. The solid lines refer to y = 50 nm, the dashed lines refer
to y = 150 nm. (s) simulation A; (n) simulation B; (h) simulation C.
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For studying the influence of the number of grid points on the obtained results, the electron transport in
the GaAs-MESFET was not only simulated with the help of the fine grid mentioned above (simulation A),
but also with a medium (simulation B) and a coarse grid (simulation C). Details on these discretizations are
given in Table 3. We note that the total number of unknowns behaves like A:B:C = 100:10:1.

Figs. 13–15 illustrate cuts of the electron density, the x- and the y-component of the drift velocity as well
as the mean electron energy at t = 4 ps, for y = 50 and y = 150 nm. For the electron density, we find that
the results of the three simulations agree well; especially the differences in the data of the simulations A and
B are very small. Concerning the drift velocity and the mean energy, the same statement is true for
y = 50 nm. Here, only the maximum values of the drift velocity differ notably in the simulations A, B
and C. At y = 150 nm, these quantities only exhibit good agreement outside the depletion layer, while
for an accurate investigation of the depletion layer a fine grid is necessary. However, the results of the sim-
ulations B and C are still more meaningful than the corresponding data of the MC calculation.

In Fig. 16, we display the temporal evolution of the boundary yD of the depletion layer, which we implic-
itly define as n[t,x,yD(t,x)] = 0.75 · 1022 m�3. Of course, the studied evolution process is not physically
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Fig. 16. Temporal evolution of the boundary of the depletion layer yD(t,x).
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relevant, since the initial conditions are not. However, Fig. 16 allows us to cherish hopes for the applica-
bility of our numerical scheme to investigate time dependent problems, and it shows some interesting fea-
tures of the depletion layer, which should also influence the behavior of real MESFETs in switching
processes. We observe that the depletion layer is not formed by a simple evacuation of electrons, but its
formation exhibits a temporal periodic structure. Rapid increasing of the depletion layer at t = 0.3 and
t = 0.6 ps is followed by a much smaller growth or even a reduction of the yD. Similarly, an oscillation be-
tween more and less symmetric depletion layers is visible. After t = 1 ps, the depletion layer evolves quite
slowly to its stationary state shape, which is almost reached at t = 3 ps.

One of the advantages of deterministic methods for solving the Boltzmann transport equation is the
availability of the electron distribution function for all times and positions in noise-free resolution. For
instance, we depict the distribution functions for electrons in the C- and in the L-valley versus energy
and polar angle at the point x = 500 nm, y = 150 nm at t = 4 ps in Fig. 17. It should be noted that these
functions are obtained by averaging the coefficients nmijk with respect to the azimuth angle u, which allows



0 0.2 0.4 0.6
-1

0

1
0

0.2

0.4

0.6

0.8

1

ε [eV]

µ

Φ
G

 [a
.u

.]

0 0.1 0.2 0.3 0.4 -1

0

1

0

0.2

0.4

0.6

0.8

1

µ
ε [eV]

Φ
L [a

.u
.]

Fig. 17. Normalized electron distribution UG in the C-valley and UL in the L-valley at t = 4 ps in the point x = 500 nm, y = 150 nm.
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the convenient representation. We find that both, the C- and the L-distribution function, are very smooth.
The distribution of L-electrons can be seen as a shifted Maxwell distribution with a temperature much higher
than the lattice temperature. On the other hand the, C-distribution function is assigned to a complicated
structure, and it is far from equilibrium. Consequently, the application of hydrodynamic transport equa-
tions for the investigation of the presented submicron GaAs-MESFET cannot yield accurate results.

Finally, we report the results for the drain characteristics of the considered GaAs-MESFET in Fig. 18 in
comparison to the results of Monte Carlo simulations. The drain current ID is obtained from the momen-
tum nvy at the drain via
Fig. 18
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. Steady state drain current ID versus drain voltage VD for several gate voltages. Lines refer to present results, symbols denote
Carlo data. (———-, s) VG = �0.2 V, (���, n) VG = �0.4 V, (� Æ �, h) VG = �0.6 V.
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The stationary state is assumed to be reached, when the relative change of ID and the source current IS is
less than 1% within a time interval of 0.2 ps. All of the calculations for determining the drain characteristics
are performed with the grid NC = 25, NL = 15, nmul = 1, M = R = 4 in momentum space and P = 18,
Q = 10 in real space. Concerning the shape of the drain characteristics, we find the typical behavior of a
MESFET [17,22]. Moreover, we observe a very good agreement of the deterministic and the stochastic
results. This implies that the presented numerical technique is able to give sufficiently accurate information
on the main transport features of a device even when a very coarse grid is used.
5. Conclusion

We present a direct multigroup-WENO solver for the Boltzmann–Poisson system describing the electron
transport in spatially two-dimensional semiconductor devices. The model equations are constructed in a
way that they allow the investigation of devices based on GaAs, which is featured by a complicated band
structure and by the fact that some of the main scattering mechanisms, i.e., the polar optical scattering and
the impurity scattering, are anisotropic.

Several numerical results on the main transport quantities in a GaAs-MESFET as well as their compar-
ison to the data of Monte Carlo simulations prove the applicability and the validity of the proposed numer-
ical scheme. The presented method is not competitive with Monte Carlo simulations on the level of
computational costs for determining stationary states with the fine grid (about two days on two AMD Ath-
lon MP 2000+ processors, 1666 MHz, 2 GB RAM). However, it provides detailed, highly accurate infor-
mation on distribution functions and on macroscopic quantities in the whole device. Therefore, the
multigroup-WENO solver can usefully be applied for creating benchmarks for all of the solvers for semi-
conductor device simulation. On the other hand, the presented numerical scheme gives sufficiently accurate
results even for coarse grids, which allows the obtaining of a noise-free overview of the main transport
properties of a device within justifiable computation times (about 20 min for determining the 17 points
of one of the current-voltage curves in Fig. 18 with one of the mentioned processors).

Hence, the multigroup-WENO solver is found to be a powerful tool for GaAs device simulation and an
interesting alternative to the usually applied Monte Carlo techniques.
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[21] C.-W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory shock capturing schemes, J. Comput. Phys. 77 (1988)

439–471.
[22] S.M. Sze, High-speed Semiconductor Devices, Wiley, New York, 1990.

http://www.hyke.org

	A direct multigroup-WENO solver for the 2D non-stationary Boltzmann -- Poisson system for GaAs devices: GaAs-MESFET
	Introduction
	The Boltzmann ndash Poisson system
	Numerical scheme
	Numerical results
	Conclusion
	Acknowledgement
	References


